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Singular self-preserving regimes of coagulation processes
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The late stages of the time evolution of disperse systems when either coagulation alone governs the temporal
changes of particle mass spectra or simultaneous condensation complicates the evolution process are studied
under the assumption that the condensation efficiencies and coagulation kernels are homogeneous functions of
the particle masses, witly and A being their homogeneity exponents, respectively. In considering the
asymptotic behavior of the particle mass distributions the renormalization-group approach is applied to three
types of coagulating systems: free coagulating systems in which coagulation alone is responsible for disperse
particle growth; source-enhanced coagulating systems, where an external spacially uniform source permanently
adds fresh small particles, with the particle production being a power function of time; and coagulating-
condensing systems in which a condensation process accompanies the coagulation growth of disperse particles.
The particle mass distributions of the forvi,(g,t) =A(t) (gB(t)) are shown to describe the asymptotic
regimes of particle growth in all the three types of coagulating systenis the particle magsThe functions
A(t) andB(t) are normally power functions of time whose power exponents are found for all possible regimes
of coagulation and condensation as the functions ahd y. The equations for the universality functigr{x)
are formulated. It is shown that in many cagésg)«x™ ? (o>1) at smallx, i.e., the particle mass distributions
are singular. The power exponants expressed in terms af andy. Two exactly soluble models illustrate the
general theoretical consideration.
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[. INTRODUCTION describing a deeply nonequilibrium process: in contrast to
the gas-kinetic situations the coagulating systems have gen-
The term “coagulation” refers to a large number of very erally no final equilibrium state, or, better to say, this state
diverse phenomena whose manifestations are related to coeentains no clusters.
lescence of clusters—the parts of an evolving system. The In what follows we consider only binary coalescenge (
simplest example of the coagulation process is the evolutior 2) for which the Smoluchowski equation has the structure
of a system ofN monomeric units that are able to form

g-mers resulting from the process 3 N=(KAN). )

(9)+(g2) + - +(g)— (g1 + 9ot - +0u). (D)
Here N=AN(g,t) is the population ofy-mers at timet, and

Aging of aerosols and hydrosdf4—5], formation of traffic ~ (KNA/) stands for a functional quadratic M. The kerneK
jams[6,7], cloud and precipitation formatidri,3,4], forma- is a homogeneous function of the masses of colliding clus-
tion of fractals[8], evolution of random graph®], forma-  ters. Because of the uniformity of E(R) one expects it to
tion of the spectra of atmospheric aeroddlgt,10-12, and  possess the self-similar solutions
even formation of bubbles in cheeses are only some of the
phenomena, where coagulation plays a key role. _

A special attention has been given to the study of the Na(@,0) =A(1) $(gB(D)), ©
asymptotic regimes of coagulatiph—4], when the coagula-
tion process has formed sufficiently large objects comparedhich can be likely candidates for describing the asymptotic
to initially existing ones. The reason for this enormous inter-stages. This concept had come up already more than half a
est to this very stage of the process is not only practical. Theentury ago in Ref.17]. In a more perfect form the theory of
far stages of coagulation processes obey the laws similar teelf-preserving mass distributions appeared later in [Ré&.
those met already in the theories of phase transitiek3— and found successful applications. Attempts to apply the
16]. Respectively, the methods for studying the deep stagegnormalization groupRG) methods were made in Ref.
of the evolution of coagulating systems are also similar td14], where the RG equation fixing the arguments of self-
those used in the theory of phase transitions, theory of turpreserving mass spectra was formulated. The next very im-
bulence, and theories of quantum fields]. However, in  portant step had been done in Rgf9], wheresingular self-
contrast to the above examples, where no closed equatiopseserving regimes were discovered, i.e., the functions
are formulated, the kinetics of coagulation is more simpledescribing the asymptotics occured singular at small values
because it can, mostly, but not in every case, be described lf the self-similarity argument. It was shown that these sin-
the Smoluchowski kinetic equation. The latter is an integrod-gular mass spectra are not exceptional and are expected to be
ifferential equation analogous to Boltzmann’s equation, butencountered in many practical situations.
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This paper focusses on the study of the singular selfHere N{g,t) is the particle mass spectrufihe number con-
preserving regimes in coagulating and coagulating<entration of the particles of magawithin the mass interval
condensing systems. The nonsingular spectra were consifig,g+dg] at timet), and
ered in our recent papé20] .

In the following section we formulate necessary starting _1(9
equations for the following three types of coagulation pro- (KNN)Q_EJO K(g=1.hMg=1.OMI.Ddl
cesses.

(i) Free coagulation, where an initial particle mass distri-
bution evolves due to coagulation alone.

(ii) Source-enhanced coagulation, where a source perma-
nently supplies the system with small fresh particles. is the collision term. In most studies on coagulation the col-

(iii) Coagulation in condensing systems in which a sourcdision kernel K(g,I) was assumed to be a homogeneous
of condensable substan¢eapor, in what follow$ provides  function of its variables
the system with vapor condensing onto the particle surfaces. \

Section Il applies the RG arguments to the three types of K(ag,al)=a"K(g.l), @)

coagulating systems. The asymptotic particle mass spectra . . .
are found in the form of Eq2). The arguments in favor of mth t)\ l()j_etl_ng trk')e thfomogenle_zlt_y exp(:r_\etn;[hWe Wlll_glsotfollotw
the existence of the singular asymptotic regimes in coagulat= I tradition, but for simplicity restrict the consideration to
ing systems are given in Sec. IV, where a classification O]separable coagulation kerng]

—N(g,t)J:K(g,I)N(I,t)dI ®)

singular particle mass distributions is proposed. In Sec. V K(g,)=(g*#+ghl9), (8)

two examples of singular self-preserving mass spectra are

given. The results are summarized in Sec. VI. wherek is a dimensionality carrier. It is apparent that
Nondimensional systems of units are used throughout the

paper. They are introduced differently for each case listed AN=a+p. 9)

above(see Sec. )l
( ) In what follows we assume thattOn<1, a=p.

The system of units%«=M =1 is used, withM being the
Il. BASIC EQUATIONS particle mass concentration,

Coagulation is a surprizingly simple process: two clusters M = f“’N(g t)gdg=const
containing, respectivelyg and | monomeric units coalesce 0 ' '
and produce irreversibly one cluster of the total mgsd,

B. Source-enhanced coagulation

(@)+(H—(g+1). (4) A spacially uniform source of fresh particles added to the
coagulating system modifies the Smoluchowski equation as
follows:

The rate of this procesk(g,l) is assumed to be a known
function of the masseg and| of colliding particles. N (g,1)=3(g,t) + (KNN)g, (10
In this section we formulate the kinetic equations for three ) ) )
types of coagulation processes. whereJ(g,t) is the production of the particle source. In what
(i) Free coagulation, where an initial mass distribution off0llows we assume the source to produce the particles with
particles evolves because of coagulation alone. masses much smaller than those formed in the course of the

(i) Source-enhanced coagulation, where in addition to th&02gulation process at large time. The particle mass concen-
process given by Ed4) a source providing the system with tration is considered to grow with time as its power,
fresh particles is added. M (1) =Jts (11)

(i) Coagulation-condensation process, where the coagu- '

lating particles grow by simultaneous condensation of vapoy,ii, J=[J(g)dg being the total production of fresh par-
molecules. ticles.

The system of units used in this caselis k=1.

A. Free coagulation
. C. Coagulation condensation
Once the rate of elementary coalescence pro€égd) is

known as a function of the masses of colliding particles, the ~Consider a spacially uniform disperse system and assume
kinetics of coagulation processes is described by the Smoldbat: (i) there is a time independent source of vapor of pro-
chowski kinetic equations the right-hand side of whighe ~ duction l; (ii) initially existing particles whose mass spec-
collision term) balances the gain and the loss in the clustetrum is a known function of their magscan coagulate and

population of given mass. This famous equation has the forrfow by s.imultaneous vapor condensation. .
According to above assumptions the set of evolution

NG, 1) =(KNN)g. (5)  equations looks as follows.
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The rate of change with time in the monomeric concen- The idea of application of RG is very simple. First, we

tration C(t) is investigate the invariance properties of the particle mass
spectra with respect to possible scaling transformations.

d_C_ | aC (12) Then, a dynamical restriction and the mass conservation put

dat | *%r additional constrains on the rescalings retaining free only

_ . one scale. The requirement of the independence of the
wherel is the production of the external source of vapor andasymptotic mass distribution of any scale whose value is

defined by the initial mass distribution leads to the RG equa-
a(g)=ag” (13 tion[15].

is the condensational efficiencyy(is a constant The mo-

ments of the particle mass distributiap, are defined as A. Free coagulation

follows: It is easy to check that iM{g,t) is a solution to Eq(5)
then a rescaled function
%(UZL g"Mag,t)dg. (14 1 gt
Ni(g,t)= N| —,— 19
1(g ) NO gO tO ( )

The first term on the right-hand sidehs) of Eq. (12) in-
creases the vapor concentration because of the action of tiealso a solution once yet arbitrary scales meet the condition

source. The last one is responsible for depleting the concen- Tix

tration of vapor due to its condensation onto the surfaces of 9 to _1 20
disperse particles. Ny (20)
The continuity equation
The mass conservation
N J
E+aC%gVN=(KNN)g (15 - .
JO gMg.t)dg= JO gNi(g.t)dg (21

describes the time evolution of the particle mass spectrum
due to condensatiofthe second term on the left-hand side imposes another condition
(Ihs) of Eq. (15)] and coagulatiorfthe rhs of this equation 5
Two integral equalities will be of use further on. On inte- 95=MNo- (22)

grating Eq.(15) over all g yields ) ) o
The independence of the asymptotic mass distribution of the

dN(t) 1= initial conditions implies its independence of the scalgs
at :_§J0 K(g,HMg,t)MI,t)dgdl, (16) g, andt,. If we differentiate Eq.(19) over g, take into
account the links Eq$20) and(22), and then pugy=1, we

whereN(t) = ZA{g,t)dg is the total particle number con- derive the RG equation for the asymptotic mass distribution

centration. As
The second equality reflects the mass conservation. Let us ON, N,

multiply both sides of Eq(15) by g and again, integrating g_A+(1_)\)t_A+2NA=0_ (23

over allg. Then, noticing thaf 5g(KNN)4dg=0 one finds 79 at

The solution to this equation has the form

Na(g,t) =t 2N y(gt= AN, (24)

dMm © 9g'N
Goec| 9 dg=aCe,0, a7

whereM (t) = [3gMg,t)dg is the total mass concentration wherey(x) is yet unknown funcj[ion. The mass distri_butio_n
of disperse phase. Combining this result with Etp) gives  Ed. (24) conserves the total particle mass concentration, i.e.,

dM=d,C+1 or the value
M(t)—M(0)=It— . 1 * *
O-MO)=ht=CWO (189 M=fo gNa(g,t)dg= fo Xp(X)dx (25
In what follows the system of unite=1=1 is used in
this case. does not change with time.
Substituting Eq(24) into Eg. (5) results in the equation
ll. RG APPROACH for the universality functiony(x),
Here the RG approach is applied for deriving the —2¢—x¢p' = (L= N)(Kipth)y. (26)

asymptotic mass spectra in the coagulating systems. Some
results in this direction had been obtained earlier in Refln studying the singular mass spectra it is much more con-
[14]. venient to rewrite Eq(26) in terms of the functions
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o(x)= jijw)dy (c=af). (@

Noticing that— 24— Xy’ = (X¢)" and using Eq(A3) in the
Appendix we get

Xo(X)=(1=N)(¢7 bp),

where (*g) stands for the Laplace convolutionf*Q)
=[5 f(x—y)g(y)dy. The equation linking the functiong,,
and¢01

(28)

X”%: d¢0’
dx dx

(29

follows from the definition of¢, [Eq. (27)].
Equations(26) and (28) are invariant with respect to the
scaling transformation

1 X
P (X)= Xl—ﬂlﬂ(—), (30)

0 Xo

that is, #1(x) is also a solution to Eq926) or (28). This

transformation, however, changes the total mass concentra-

tion
M,=x5"*M. (31
Another transformation
1 X
P1(X)= X_S i//< X_o> (32

leaves the mass unchanged, but changegZ8). The func-
tion ¢, meets the equation

—Xg M2y X)) = (L= N)(Kepyhy)y - (33
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INp
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ON;
+t _A+2NA:0,

a3 (36)

g

wheret,=ax is a time scale whose value is defined by the
initial conditions.
The solution to Eq(36) has the form

Na(g,t)=e 2tay(ge "), (37)

The equation fory is readily obtained on substituting Eqg.
(37) into Eq. (5),

Xbo=ta(df b1-4)-

The transformation property E30) remains valid ah =1,
but in contrast to other cases it changes neither the sgale
nor the total masfthe value of¢4(0)].

It is important to notice that the scalgis proportional to
the reciprocal mass concentration,

(39

t,ocM L (39

In order to prove it we notice that the asymptotic mass dis-
tribution has the structure

Na=Mgg 2¥(g/go).

The value ofp,xgoM [see Eq.(14)]. On the other hand,

@2= [ (KNNR) (dg=xM2g,. Hence, goxgo/M, which
proves Eq.(39).

(40)

B. Source-enhanced coagulation

The existence of self-preserving regimes in source-
enhanced systems is less evident, for the presence of the
source term in E¢(10) makes it impossible for a straightfor-
ward application of RG. This difficulty can be avoided by
assuming that the source can be ignored in @d) and
replaced by the condition that the total mass concentration
grows asM (t)ects. This step restores the possibility to apply

At \=1 the RG argumentation should be modified. It isthe RG approacksee also Ref22]). _
expected that exponential time dependencies replace the Once agalnLl/ve compare two asymptotic mass spectra
power ones in Eq(24). These dependencies contain a time/NVa(g,t) and. NV "Na(9/go,t/to) and find the condition for
scale fixed with the initial conditions to E@5). We, there-  the rescaled spectrum to describe the same regime as nonres-
fore, replaced,=¢d, in Eq. (5) and redefine the rescaled caled one. The first condition does not differ from £20),

function in Eq.(19), No=gi™Mt (41)
07 Yo 0-

(34  Next, the mass concentration should grow as the pewr

time, i.e.,

Ni(g t)=i/\/<g 5)
e No 1 do’éo)
The function\; is again, a solution to Ed5) if the condi-
tion Eq. (22) is fulfilled. The dynamical condition Eq20)
adds nothing new, and the link between the scé}eandg
should be introduced differently. We use the link

ks - 1 (= gt s
fo gNa(g,t)dg= Nofo gNA(go,to)dg—Jt . (42

This condition gives

éo(90)=agp (39 g2
NO:t_SO' (43)
0

introducing no new scales. Heeeand x are constants. On
differentiating \/; over g, and applying Eqs(22) and (35)
we get Combining Eqs(41) and(43) yields
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[2+s(1+N)]/(1+5s)

No=0g to=g§ M9, (44)

Our final requirement of independence of the asymptotic

distribution of the scalg, leads to the RG equation

2+s(1+X\) 1—A¢M@+ aN;_O 4
1+s 1+s ot ‘999 7 (45)
The solution to this equation has the form
Na(gH=t"Fy(gt™ "), (46)
where
B 2+s(1+\) _1+s 4
TTia 0 Ty “n

The equation for the universality functiof(x) is readily
derived by substituting Eq46) into Eq. (5) for free coagu-

lation. The action of the source is accounted for by condition

(42) providing the power growth of the particle mass con-
centration with time. The equation fa@r looks as follows:

1+s

2+s(1+N)
1-X\

1-A

X' =(Kiph)y. (48)

Integrating twice both sides of this equation fromto o
gives

1+sA
1-A

Xo+Sh1= (5 bp)- (49

At A =1 the RG equation Eq39) should be modified by
replacing the scalé, with t,(t)o<1/M(t). This step can be
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1
@,(1)°
The mass of disperse phase then growsvVest, i.e., all

vapor mass converts to the particles. The case when mono-
mer concentration grows linearly with time

C(t~ (52

C(t)~at, (53

but a<1, with the mass of the disperse phase growing lin-
early,

M(t)—Mo=(1—a)t (54)

can also be attributed to this item.

(iil) The vapor concentration grows with time @gt)~t,
while the mass of the disperse phase also grows, but slower
thant,

M(t)oct® with 0O0<s<1. (55

Below we derive the conditions for the realization of
these cases and the equations for the asymptotic mass spec-
tra.

Case (i) Let us rewrite continuity equatiofil5) taking
into account Eq(52),

N 1 99N

e,(t) 9

Since the mass concentration grows with timet,ase can
puts=1 in Egs.(46) and (47) and find that the asymptotic
regime is described by the distribution

Mg, =A(t) ¢(gB(1))

= (KAN),. (56)

(57)

done, for the power dependence of the mass concentration on
time is slow compared to the exponential dependence of thwith

characteristic particle magsee Eq.(51) below]. The RG
equation is then

tS+1 aNA
ts T'FZNA:O,

INp
—a T
g 79

(50)
The solution to this equation again, has the form of @)
with

o) =exd — (t/ty)*"]. (51)

The functiong(x) meets the same equatipiqg. (38)] as in

the case of free coagulation. The strightforward substitution

of Eq. (40) with go given by Eq.(51) readily proves this
statement.

C. Coagulation condensation

Now let us return to Eq(12). At the late stage of evolu-
tion of the system the vapor concentratiot) and the mo-
ments of particle mass distributign,(t) are expected to be

monotonous functions of time. Then it is possible to imagine

two situations.
(i) The vapor concentration grows with time slower than
andd;C on the |hs of Eq(12) can be neglected, i.e.,

A(t)=t"¢ B(t)=t 7. (59

The power exponents and % found from Eq.(47) are

2
=1\

3+A

Y 59

The equation fory(x) is derived by substituting Eq56)
into Eq. (15). The result is

2
@(WL bp)-
(60)
The parentheses on the rhs of E60) stand for the Laplace

convolution[see Eq.(A2) of the Appendi}. The lhs of Eq.
(60) can be rewriten as

3+A
l—}\w

2 ..
T Y

1 y )/_
6,0 X' =

34N 2 (X
1 _1—AX¢_F¢¢W
o é,(x)
e 6,0/ ©Y

Integrating Eqs(60) and (61) twice fromx to « gives
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1+\ b (X)
Ly Xa0 b0~ T = (8. (6
The identity
1(X)=Xgho(X) + quo(y)dy 63

allows one to cast Eq62) into another useful form,

X 2 1 X
- Jo do(y)dy+ EX%(XH mfo y7i(y)dy

=(¢hdp). (64)

Puttingx=0 in Eqg.(62) yields
¢1(0)= foz//(x)dXZ 1. (65
0

Equation(57) together with Egs(58) and (59) provides the

asymptotically linear growth of the total mass concentratio

with time,

M(t)—Mo= f:gNA(g-t)dgmt- (66)

Case (i) If ¢,(t) drops with time sufficiently fast, then
the concentratiorCoct at larget, the mass concentration of

the disperse phase growing slower thianThe continuity
equation(15) takes the form

2

0') *
at/\f+taggyj\/=a—gz(<bacbﬁ). (67

The substitution of\(g,t) in the form of Eq.(46) and bal-
ancing the powers of time in E@67) give

3+2a—y 2

=Ty, 0 TTID,

T (68)

Using Eq.(47) allows us to find the growth exponesiin Eq.
(42),
_ 1-2\+vy

T (69)

S

The condition G<s<<1 puts two restrictions ory and\,

y<\A and y>2\—1. (70

The equation for the universality functiof(x) looks as
follows:

3+2h—y 2 od d

(71)

Integrating twice fronx to o« both sides of Eq(71) yields

PHYSICAL REVIEW E 65041604

1+y—2\ (= 2 o
Tij ¢O(Y)dy+lTyX¢o(X)_ ., (X)= (b5 dp).

(72

It is seen, that the coefficient in the second term on the lhs
of Eq. (72) is positive because of the second condit{@0).

At y=2N—1 Eq.(69) givess=0. The mass of disperse
phase ceases to grow. At this and smajlehe condensation
process is slow and only a finite part of vapor converts to the
disperse phases& 0). This means that the condensation pro-
cess becomes ineffective at large time and can be thus ig-
nored. The coagulation process goes like in free systems.

IV. TYPES OF SINGULAR DISTRIBUTIONS

The term “singular distribution” appeared for the first
time in Ref.[19]. It refers to the asymptotic distributions
having a singularity at small particles masses. Such distribu-
tions had been known before this work, e.g., Junge’s distri-
butions of atmospheric aerosdl$,4], mass distributions in

rFource—enhanced systé@P—24], the asymptotic distribution

In the Golovin-Scott mode[25,26 (the modela=1, B
=0). In Refs.[19,27 it was shown that the singular distri-
butions should appear in many realistic situations such as
diffusion controlled formation of supported metal crystal-
lites, coagulation of aerosols in shear viscous flows and in
turbulent atmosphere, coagulation of fractals, source-
enhanced coagulation of aerosols in the continuum regime,
etc.

A. Singular distributions

Let us return to Eq(24) and assume the functiaf(x) to
be integrable ak=0. Then the asymptotic time dependence
of the total particle number concentration can be found from
Eq. (24),

N(t)=f:Mg,t>dg~ f:NA(g,Udgoct*“(H). (73

And now we are showing that far=3>0 the asymptotics
Eq. (73) cannot hold. To this end, we consider the discrete
version of the Smoluchowski equation, which, in particular,
follows from Eq. (5) if the latter is subject to the initial
condition V(g,0)= 8(g—1) [8(x) is Dirac’s delta functioh

In this case the mass spectrum has a discrete form

e}

Mag,t)=2, ¢ (H)d(g—k).

k=1

(74)

The concentrations,(t) obey the set of equations

de, 137 ”
— =2 K(s—I,l)ce_cs—cs > K(sh)c. (75
dt 2 & k=1

Let us consider the kern&(g,l)=g“l“. From Eq.(75) one
finds
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t L the power function/(x)ex” into Eq. (28) and balancing the
Cl(t):ex’{ - Jl)%(t )dt ) (76)  powers lead to the resulizt>3>0):
= Ax~(1+))
and (X)) = Ax (81
1 (t with
N<t>=1——f PA(t")dt’, (77)
2)o af
A (82

where the momenp (t) is now defined as AM1=MB(1=a,1-5)
o HereB(x,y) is Euler’s beta function.
(Pa(t):E kec,(t). (78) Equations(81) and (_82) give an gxac;solution of .Eq.
k=0 (28). Unfortunately, this exact solution is unnormalizable,
) . i.e., the integrall o x(x)dx diverges. There exist other so-
Since att—c the monomer concentration goes to zero, thﬁutions haVing the SingularitW(X)mX_(:H—)\). This is a con-

integral on the rhs of Eq76) must diverge, i.e.0<1. On  gequence of the scaling invariance of the funciigm) [see
the other hand, the integrdly¢?(t)dt=1, which corre- Eq. (30)].

sponds toN(«)=0. Two inequality 2r>1 and the law At o=pg=0 it is possible to find the normalizable solu-
N(t)ct~ (2771 then follow immediately from the assump- tign

tion thate(t)oct™ 7. And finally, the conditiore>0 leads to

the obvious inequalitN(t)<¢,(t), i.e., 20—1=0. Com- P(X)=e" 2, (83
bining these three inequalitieg;<1, 20>1, and -1

=0 giveso=1 instead ofo=1/(1-2a), as follows from  The scalea is defined by the normalization condition.

Eq.(73. o At B=0 the singularity is weaker thax*M), and the
The question then comes up: how to reconcile this res“'fntegral $,(0)=Ex y(x)dx converges. Hence, at small
with the self-preservation in the form of E(4)? Eq. (28) can be rgwritten as
The answer was found in Rdf19]. It is: one must sacri-
fice the assumption that the functiaf(x) is regular atx M
=0. It was shown[19] that the functiony(x) having the x¢0=(1—)\)¢x(0)f do(y)dy. (84)
singularity 0
1 The solution to this equation is
p(x)c ——  at x<1 (79
X do(X)=bx"*, (85)
removes the contradiction, once the diverging integrals bgare k=1—(1—)\)¢,(0) andb is a constant. Ifq(x)
regularized by introducing a cutoff parameterl. For ex-  _ bo(X)—bx *#00 atx—0 then Eq.(84) reproduces the
ample, result of Ref.[27] k=\/2. We, however, did not find con-
" " vincing arguments for rejecting the possibilitig€0)=0 or
N(t)=JO Mag,t)dg~ L Na(g,t)dg q(0)=e=.
[~ @y 1 C. Source-enhanced coagulation
—1/(1-\ —(1+\ -
~t Lb(t)x dx=x t’ (80) At small x the second term on the |hs of E49) goes to

1, and the asymptotics af(x) is defined by the equation
whereb(t)ot~Y2~M Al other momentsg,,(t) with a<\
containig the divergency at smailalso behave like 2. JX¢ (X—y) ¢ 4(y)dy=s. (86)

Not all, however, is yet in order. The point is that the o p

singular distribution cannot be so strightforwardly substi-
tuted into Eq.(5), for its rhs[Eqg. (6)] contains divergent Again, we seek the solution in the powerlike form. On sub-
integrals. Once again, the situation is saved by introducingtituting /(x) =Ax" “ into Eq. (86) yields
the cutoff parameter thaéxactly cancelsin the limit e

=t~ YA"N_0 (the proof shown in the Appendix This 3+\
extremely important property of the Smoluchowski equation ©0="5 (87)
was first noticed in Ref.19].
and
B. Free systems
Let us analyze first the types of singularities arising in the A= (w—a—-1)(0—p—1) 9
asymptotic mass spectra in free systems. The substitution of Bla—w+2,8—w+2)’
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Now let us notice that ab=(3+\)/2 the sum of the argu-
ments of beta function in Eq88) is unity, which allows one
to use the well known theorem for Euler’s beta function,

1-p 1+ pu T
B(a—w+2ﬂ—w+2)=B( 5 5 ):Coiﬂ',u,/Z)'
(89
Finally,
— 2
A= \/s(l ,LL)COS(W,LL/Z), 90)
41

where u=a— B, u=0. No singular solutions exist gt
<0.

D. Coagulation condensation
Let us first analyze the behavior of the solution to &)
at smallx. At x<1,

P(X)~AX"“. (91)

Since the first two terms on the lhs of E@§4) can be ne-
glected atx<1, the power balance gives

w=2—(y—N\). (92

The coefficientA in Eq. (91) is then readily found from Eq.
(64),

(Ita—y)(1+B—7)

A 2= 1= B —ary- B b, (0)°

(93

PHYSICAL REVIEW E 65041604

V. EXAMPLES

This section considers two models in which the singular
universality functions can be found analytically.

A. Model a=1, =0

Let us consider first the modet=1, B=0. As was
shown above, the asymptotic regimes of free and source-
enhanced coagulation and coagulation-condensation pro-
cesses ay=1 are described by the same universality func-
tion ¥(x), which is the solution of the equation

taXdo=($5 b1),

wheret, is the time scale introduced in deriving E(8).
The link

(98)

$1=Xdy (99

closes Eq(99).
In terms of Laplace’s images Eq®8) and(99) have the
form

dd,
~tago = Po(P)P(p) (100

and

d
PP (p)—1=—-pPo(p), (10D

dp

where® ,(p) = fge P*¢p,(x)dx.
Equation(100 allows one to find the constaty. To this

Now let us formulate the conditions for realizing the caseend, we putp=0 in Eq. (100 and notice thatd(0)

(i) in terms of A and y. Using the definition ofe,(t) Eq.
(14) and the distribution in the form E@57) gives
C(t)=p,(t)xAB~ Mot (94)

with

1+N—2y
r=¢—n(lt+y)=

BT (95

The condition allowing for ignoringd,C in Eq. (12) is r
<1 or

y>N\. (96)

Another restriction ony follows from the convergence of

J3y?u(y)dy at the lower limit,
2y—A>1. (97)

At A<y<(1+\)/2 the condensation term in EG6) can

be neglected, and the asymptotic regimes do not differ of "

those in source-enhanced coagulating systems.

The singular asymptotics never realizesyat A. Neither
attempt to balance the powersxfn Eq. (72) gives consis-
tent results.

=[ox®odx. On integrating by parts givesd(0)
=1/2[ 5 p(X)x?dx=0.5¢,(0). Similarly one findsd,(0)
= [oXp1(X)dx= ¢,(0). Then Eq.(100 gives

t,=2. (102

There is no problem now to derive a first-order differential
equation ford, alone,

!

@
2p5%=®0+p®6—1. (103

The result Eq(102) is taken into account in Eq103). Equa-
tion (103 is readily solved to give

Vi+4p—1
®o(p)= o (109
p
The function(x) corresponding to Eq.104) is
(x)= o e X4, (105
V2mx®

The functiony(x) can always be rescaled according to Eq.
(32.
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The asymptotic solution of this problem was found in Ref. Although the solution to this equation can be found in terms
[19] for free coagulation. of known special functions the inversion of the Laplace
transform in the analytical form is hardly possible.

B. Model a=8=0

Let us consider the source-enhanced coagulation process
for the model with constant coagulation kernel. Accordingto |n considering the asymptotic behavior of the particle
the consideration of Sec. IV the asymptotic mass distributioninass distributions the RG approach has been applied to three
has the singularityy(x)=x~*% Here we find the exact types of coagulating systems: free coagulating systems in
asymptotic mass distribution. To this end, we must solve thgyhich coagulation alone is responsible for the disperse par-

VI. RESULTS AND DISCUSSION

equation[see Eq(49)], ticle growth, source-enhanced coagulating systems, where an
o external spacially uniform source permanently adds fresh
Xo(X) +56¢1(X) = (g o) (108 gmall particles, with the particle production being a power

Let us again introduce the Laplace imabg(p) and use E function of time, and coagulating-condensing systems in
(10D Tf?ese steps result in tﬁe first-ordgrpdifferential eq.ua-W hich a condensation process accompanies the coagulation
tion ' P q growth of disperse particles. The particle mass distributions

of the form[see Eq.3)]

(s+ 1)‘];;'1;)0 ——e2. (07 Na(g.0)=A() i(gB(1)

have been found to describe the asymptotic regimes of the
particle growth in all the three types of coagulating systems.
D, dd, d In free coagulating systems E(B) absolutely naturally
s—+(s+1)——=(s+1)p Y6 _—ptDp, follows from the Smoluchowski equation. Of course, this
d d self-similarity solution corresponds to some fixed initial con-
(108 ditions, and the step done by earlier authors reduced to the
assumption that the asymptotic regime of the coagulation
process was independent of the form of the initial conditions.

Noticing that

reduces this equation to

dy It was natural, therefore, to reject the singular asymptotics as
d—+y2—sgs‘1=0. (109 irrelevant, for the integrals entering the collision term in the
4 Smoluchowski equation were divergent.

The RG approach introduces the assumption of the inde-
pendence of the initial conditions explicitly via the RG equa-
tion [Egs. (23) and(45)], and the derivation of Eq3) then
relies only on the transformation properties of the Smolu-
1 chowskii equation allowing for the formulation of the dy-

®o(p) = ——tanh/p. (110  namical constraint E(20). Another constraint Eq22) re-
\/5 lated to the mass conservation is entirely independent of the
form of the kinetic equation. Moreover, the dynamical con-
The original is now readily restored, dition can also be derived relying upon a consideration in the
i spirit of earlier works on the R@EL3], rather than the kinetic
$o(X) =O(0fimx), (11D equation. For free coagulation it was done in F&g]. The
RG approach is in no way related to the concrete properties

Here we introduced the new unknown functiog
=p¥Et P and the variablg = p¥c* Y, At s=1 this equa-
tion has a simple solutiop=tanh( or

where of the functiony and thus readily admits its singular behav-
% 1\2 ior. The fact that the singularity does not prevent the deriva-
@2(z|y)=22 exp{iwy( n+ _) cog2n+1)z tion of a closed equation fap resolves the problem of find-
n=0 2 ing and classifying the asymptotic regimes.
(112 In the source-enhanced coagulating systems and in

. ., . , . coagulating-condensing ones no exact self-similarity solu-
is Jacobi's theta functiof28]. At x<1 it has the asymptotics {jog exist. Still the RG approach has been shown to work
and to give rather impressive results.
_ 1 We have given the classification of the singular self-
bo(X)= 1-2ex (113 : . ; . :
Jax X preserving regimes in coagulating systems and have defined
the conditions for their realization. They are listed below.
Equation (109 can be reduced to a linear second-order In the free coagulating systemg(x)o1/x*™* at x<1,
differential equation which corresponds to the mass distribution of the form

1
— —s¢s71z=0. (114 Na(g,t)= ﬁ' (115
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FIG. 1. Nonsingularicurve 1 and singular(curve 2 particle A

mass distributions. Shown are the universality functig(s) found FIG. 2. The regimes of particle growth in coagulating-

for diffusion controlled coagulation of particl¢the kernelK(g,!) condensing systems¢l) y>(1+\)/2. The mass of disperse phase

=(g~ Y3+ 1713 (g¥3+1Y9)]. Curve 1(nonsingulay—free coagula- grows ast, i.e., the coagulating particles deplete the vag@y.(1

tion process. Curve 2—source-enhanced coagulation process.  +\)/2>y>\. The mass of disperse phase still grows linearly with
time. The universality function is the same as in source-enhanced

The condition for the realization of this asymptoticsaig3 ~ coagulating systems with constant in time sour@.\<y<2\

>0. At 3=0 the singularity is weakerj(x)<1/x**”, where ~ —1. The mass of disperse phase grows with time slower than lin-

y<\ [see Eq.85)]. It is not so difficult to understand the early. The mass of condensable vapor grows linearly with time. No

physical meaning of this condition: the rate of interaction ofSingular regimes are detected) y<<2\ —1. Only a finite part of

small particles 1) with large onesg> 1) is of the order vapor condenses on the dl'sperse partlcles.. The universality fu.nctlon

of K(1,g)*g® andK(g,g)och, respectively, i.e., the smaller has_ the same §hape as in free coagulating systems. No singular

particles interact with the larger ones much slower than th&f9'mes can exist

latters between themselvest€\). Strongly polydisperse ) ) o

mass spectra thus form in which the part of larger particles i§'@SS axis. The steady-state regimes of coagulation in source-

less than that of smaller ones. The situation changes drasfe"hanced systems had been considerg@2r-24. ,

cally once 8<0. In this caseK(1g)>K(g,g), ie., the | We have conS|der§d .the systems of coagulating parthles

larger particles “eat” the smaller ones much faster than eactf! Which a constant in time source produces a low volatile

others. A hump in the distribution at large masses developd/@POr condensing onto the particle surfaces. The particle

while the concentrations of small particles drops down withd"oWth in such systems is similar in many respect to that in

time. A singular and a nonsingular distributions are shown irs0Urce-enhanced arigsometimes free systems. Several re-
Fig. 1. gimes have been detected.

Two inequalitiesa+ 8<1 anda— B<1 define the con- _(i) The dispers%_phgse consumes all mass of the vapor. In
ditions for the singular distributions to exist in source— thiS casey(x)=1/x=" 7%, or
enhanced coagulating systems. These are simply the condi- 1 2 i
tions for the convergency of the integral on the rhs of Eq. Na(g,t) 1727 g= 70, (117)
(86). The singularity of the mass spectra in the source—
enhanced coagulating systemsjisc)cx~TN72[22 23 or,  The conditions for realizing these distributions anes 1,

in terms of the particle masses 2y>1+\. At A\<y<(A+1)/2 the coagulating-condensing
system behaves like a source-enhanced coagulating system
Na(g,t)ocg™ BTN =(1=8) (102010 (1169 with linearly growing mass concentration.

(i) When the mass of the disperse phase grows slower
At s=1 (a constant in time sourg¢he time dependent mul- than t the asymptotic mass distribution in coagulating-
tiplier turns to unity. The mass spectrum has a steady-stateondensing systems is the same as in source-enhanced sys-
left wing, i.e., the spectrum of highly disperse fraction istems. The singular asymptotics, however, never realizes. At
independent of time, although the source permanently supy<2\—1 condensation is so slow that the coagulating dis-
plies the system with the fresh portions of small particlesperse system consumes only a finite part of vapor and the
These particles deposite mainly on the larger ones providingoagulation process goes like in free coagulating systems.
the right wing of the spectrum to move to the right along the The whole situation is clearly seen from Fig. 2.
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VII. CONCLUDING REMARKS (F)’(*G): —(F)/,*G): —G(Y)F(0)+F(y)G(0)+ (F* G)',)

Coagulation processes display a number of very diverse (A5)
self-preserving asymptotic regimes. The RG approach occuign combining this result with EqA4) yields
to be a very fruitful tool for their investigation. Here we have
focussed on the singular asymptotic regimes that realize in a d(F*G)=G(0)F(y)+(F*Gy). (AB)
number of practically important situations: source-enhanced
coagulation of aerosols in continuum regime, coagulationDifferentiating once again E¢A6) over x and taking into
condensation growth of aerosol particles in turbulent flowsaccount thafF’=f andG’=—g prove Eq.(A3).
etc. Once the conditions for realizing the singular asymptot- Above proof assumed that the functiofisg, F, and G
ics are known, it becomes easy to diagnose them. It is muchave no singularities at=0. The extension to singulfand
harder to solve respective equations and to find the functiog is almost straightforward. We apply the identity E43) to
 either analytically or numerically. Even the simplest ana-the functions

lyticall lubl I far f trivial.
ytically soluble examples are far from trivia f(0=1(X)O(x—¢) and g.(x)=g(x)O(x—e),
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APPENDIX: THE IDENTITY Q(FEGEFJ
€

“t(x—y)g(y)dy—f(x— €)G(e)

Let f(x) andg(x) be arbitrary functions and
—g(x—e)F(e). (A8)

F(X)=f f(y)dy and G(X)=f g(y)dy. (Al)  Now it is seen that in the limie—0 the rhs of Eq(A8) is
X X finite and independent of. Indeed, at smalk we have
We also introduce the notation 9 [x—e
. %L f(x=y)g(y)dy—f(x—e€)G(e) —g(x—€)F(e)
(Q*p):f a(x—y)p(y)dy (A2)
° =—f(x=€e)g(e) —f(e)g(x—e) +f(x)g(e) +g(x)f(e).

for the Laplace convolution of a couple of functiop$x) (A9)
andq(x).

Now we are ready to prove a very important identity At small e the rhs of Eq.(A9)_goes to zero. In proving Eq.
(A9) the convergence of the integral on its Ihs was assumed,

d2 i.e., not very strong singularities éfandg are admissible.
—Z(F*G)z(f*g)— f(x)G(0)—g(x)F(0). (A3) The identity (A3) allows the Smoluchowski equation
dx aN(g,t)=(KNN)4 to be rewritten as
To this end let us find the first derivative of{ G), N 2 (9
—=—| O, (g-I,t)P4l,t)dl. A10
dy(F*G)=F(0)G(y) +(F.*G). (A4) r - gg2lo (@=1.OP4(1LY (AL0)
Next, we integrate by parts the second term on the rhs of Eqrhis form of the Smoluchowski equation appeared for the
(A4). The result is first time in Ref.[19].
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