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Singular self-preserving regimes of coagulation processes
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The late stages of the time evolution of disperse systems when either coagulation alone governs the temporal
changes of particle mass spectra or simultaneous condensation complicates the evolution process are studied
under the assumption that the condensation efficiencies and coagulation kernels are homogeneous functions of
the particle masses, withg and l being their homogeneity exponents, respectively. In considering the
asymptotic behavior of the particle mass distributions the renormalization-group approach is applied to three
types of coagulating systems: free coagulating systems in which coagulation alone is responsible for disperse
particle growth; source-enhanced coagulating systems, where an external spacially uniform source permanently
adds fresh small particles, with the particle production being a power function of time; and coagulating-
condensing systems in which a condensation process accompanies the coagulation growth of disperse particles.
The particle mass distributions of the formNA(g,t)5A(t)c„gB(t)… are shown to describe the asymptotic
regimes of particle growth in all the three types of coagulating systems (g is the particle mass!. The functions
A(t) andB(t) are normally power functions of time whose power exponents are found for all possible regimes
of coagulation and condensation as the functions ofl andg. The equations for the universality functionc(x)
are formulated. It is shown that in many casesc(x)}x2s (s.1) at smallx, i.e., the particle mass distributions
are singular. The power exponents is expressed in terms ofl andg. Two exactly soluble models illustrate the
general theoretical consideration.

DOI: 10.1103/PhysRevE.65.041604 PACS number~s!: 68.03.Fg, 05.70.2a, 64.60.Qb
ry
c
Th
tio

th

th

re
er
Th
r

g
t

tu

tio
pl
d
od
bu

to
gen-
te

(
ure

us-

tic
alf a
f

the
f.
lf-
im-

ons
ues
in-
to be
I. INTRODUCTION

The term ‘‘coagulation’’ refers to a large number of ve
diverse phenomena whose manifestations are related to
lescence of clusters—the parts of an evolving system.
simplest example of the coagulation process is the evolu
of a system ofN monomeric units that are able to form
g-mers resulting from the process

~g1!1~g2!1•••1~gk!→~g11g21•••1gk!. ~1!

Aging of aerosols and hydrosols@1–5#, formation of traffic
jams@6,7#, cloud and precipitation formation@1,3,4#, forma-
tion of fractals@8#, evolution of random graphs@9#, forma-
tion of the spectra of atmospheric aerosols@1,4,10–12#, and
even formation of bubbles in cheeses are only some of
phenomena, where coagulation plays a key role.

A special attention has been given to the study of
asymptotic regimes of coagulation@1–4#, when the coagula-
tion process has formed sufficiently large objects compa
to initially existing ones. The reason for this enormous int
est to this very stage of the process is not only practical.
far stages of coagulation processes obey the laws simila
those met already in the theories of phase transitions@8,13–
16#. Respectively, the methods for studying the deep sta
of the evolution of coagulating systems are also similar
those used in the theory of phase transitions, theory of
bulence, and theories of quantum fields@15#. However, in
contrast to the above examples, where no closed equa
are formulated, the kinetics of coagulation is more sim
because it can, mostly, but not in every case, be describe
the Smoluchowski kinetic equation. The latter is an integr
ifferential equation analogous to Boltzmann’s equation,
1063-651X/2002/65~4!/041604~12!/$20.00 65 0416
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describing a deeply nonequilibrium process: in contrast
the gas-kinetic situations the coagulating systems have
erally no final equilibrium state, or, better to say, this sta
contains no clusters.

In what follows we consider only binary coalescencek
52) for which the Smoluchowski equation has the struct

] t N5~KNN !. ~2!

HereN5N(g,t) is the population ofg-mers at timet, and
(KNN ) stands for a functional quadratic inN. The kernelK
is a homogeneous function of the masses of colliding cl
ters. Because of the uniformity of Eq.~2! one expects it to
possess the self-similar solutions

NA~g,t !5A~ t !c„gB~ t !…, ~3!

which can be likely candidates for describing the asympto
stages. This concept had come up already more than h
century ago in Ref.@17#. In a more perfect form the theory o
self-preserving mass distributions appeared later in Ref.@18#
and found successful applications. Attempts to apply
renormalization group~RG! methods were made in Re
@14#, where the RG equation fixing the arguments of se
preserving mass spectra was formulated. The next very
portant step had been done in Ref.@19#, wheresingularself-
preserving regimes were discovered, i.e., the functi
describing the asymptotics occured singular at small val
of the self-similarity argument. It was shown that these s
gular mass spectra are not exceptional and are expected
encountered in many practical situations.
©2002 The American Physical Society04-1
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This paper focusses on the study of the singular s
preserving regimes in coagulating and coagulati
condensing systems. The nonsingular spectra were con
ered in our recent paper@20#

In the following section we formulate necessary start
equations for the following three types of coagulation p
cesses.

~i! Free coagulation, where an initial particle mass dis
bution evolves due to coagulation alone.

~ii ! Source-enhanced coagulation, where a source pe
nently supplies the system with small fresh particles.

~iii ! Coagulation in condensing systems in which a sou
of condensable substance~vapor, in what follows! provides
the system with vapor condensing onto the particle surfa
Section III applies the RG arguments to the three types
coagulating systems. The asymptotic particle mass spe
are found in the form of Eq.~2!. The arguments in favor o
the existence of the singular asymptotic regimes in coagu
ing systems are given in Sec. IV, where a classification
singular particle mass distributions is proposed. In Sec
two examples of singular self-preserving mass spectra
given. The results are summarized in Sec. VI.

Nondimensional systems of units are used throughout
paper. They are introduced differently for each case lis
above~see Sec. II!.

II. BASIC EQUATIONS

Coagulation is a surprizingly simple process: two clust
containing, respectively,g and l monomeric units coalesc
and produce irreversibly one cluster of the total massg1 l ,

~g!1~ l !→~g1 l !. ~4!

The rate of this processK(g,l ) is assumed to be a know
function of the massesg and l of colliding particles.

In this section we formulate the kinetic equations for thr
types of coagulation processes.

~i! Free coagulation, where an initial mass distribution
particles evolves because of coagulation alone.

~ii ! Source-enhanced coagulation, where in addition to
process given by Eq.~4! a source providing the system wit
fresh particles is added.

~iii ! Coagulation-condensation process, where the coa
lating particles grow by simultaneous condensation of va
molecules.

A. Free coagulation

Once the rate of elementary coalescence processK(g,l ) is
known as a function of the masses of colliding particles,
kinetics of coagulation processes is described by the Sm
chowski kinetic equations the right-hand side of which~the
collision term! balances the gain and the loss in the clus
population of given mass. This famous equation has the f

] t N~g,t !5~KNN !g . ~5!
04160
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HereN(g,t) is the particle mass spectrum~the number con-
centration of the particles of massg within the mass interval
@g,g1dg# at time t), and

~KNN !g5
1

2E0

g

K~g2 l ,l !N~g2 l ,t !N~ l ,t !dl

2N~g,t !E
0

`

K~g,l !N~ l ,t !dl ~6!

is the collision term. In most studies on coagulation the c
lision kernel K(g,l ) was assumed to be a homogeneo
function of its variables

K~ag,al !5alK~g,l !, ~7!

with l being the homogeneity exponent. We will also follo
this tradition, but for simplicity restrict the consideration
separable coagulation kernels@21#

K~g,l !5k~gal b1gbl a!, ~8!

wherek is a dimensionality carrier. It is apparent that

l5a1b. ~9!

In what follows we assume that 0<l<1, a>b.
The system of unitsk5M51 is used, withM being the

particle mass concentration,

M5E
0

`

N~g,t !gdg5const.

B. Source-enhanced coagulation

A spacially uniform source of fresh particles added to t
coagulating system modifies the Smoluchowski equation
follows:

] tN~g,t !5J~g,t !1~KNN !g , ~10!

whereJ(g,t) is the production of the particle source. In wh
follows we assume the source to produce the particles w
masses much smaller than those formed in the course o
coagulation process at large time. The particle mass con
tration is considered to grow with time as its power,

M ~ t !5Jts, ~11!

with J5*J(g)dg being the total production of fresh pa
ticles.

The system of units used in this case isJ5k51.

C. Coagulation condensation

Consider a spacially uniform disperse system and ass
that: ~i! there is a time independent source of vapor of p
duction I; ~ii ! initially existing particles whose mass spe
trum is a known function of their massg can coagulate and
grow by simultaneous vapor condensation.

According to above assumptions the set of evolut
equations looks as follows.
4-2
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The rate of change with time in the monomeric conce
tration C(t) is

dC

dt
5I 2aCwg , ~12!

whereI is the production of the external source of vapor a

a~g!5agg ~13!

is the condensational efficiency (a is a constant!. The mo-
ments of the particle mass distributionwg are defined as
follows:

wg~ t !5E
0

`

ggN~g,t !dg. ~14!

The first term on the right-hand side~rhs! of Eq. ~12! in-
creases the vapor concentration because of the action o
source. The last one is responsible for depleting the con
tration of vapor due to its condensation onto the surface
disperse particles.

The continuity equation

]N
]t

1aC
]

]g
ggN5~KNN !g ~15!

describes the time evolution of the particle mass spect
due to condensation@the second term on the left-hand sid
~lhs! of Eq. ~15!# and coagulation~the rhs of this equation!.

Two integral equalities will be of use further on. On int
grating Eq.~15! over all g yields

dN~ t !

dt
52

1

2E0

`

K~g,l !N~g,t !N~ l ,t !dgdl, ~16!

whereN(t)5*0
`N(g,t)dg is the total particle number con

centration.
The second equality reflects the mass conservation. Le

multiply both sides of Eq.~15! by g and again, integrating
over all g. Then, noticing that*0

`g(KNN )gdg50 one finds

dM

dt
52aCE

0

`

g
]ggN

]g
dg5aCwg~ t !, ~17!

whereM (t)5*0
`gN(g,t)dg is the total mass concentratio

of disperse phase. Combining this result with Eq.~12! gives
dtM5dtC1I or

M ~ t !2M ~0!5It 2C~ t !. ~18!

In what follows the system of unitsa5I 51 is used in
this case.

III. RG APPROACH

Here the RG approach is applied for deriving t
asymptotic mass spectra in the coagulating systems. S
results in this direction had been obtained earlier in R
@14#.
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The idea of application of RG is very simple. First, w
investigate the invariance properties of the particle m
spectra with respect to possible scaling transformatio
Then, a dynamical restriction and the mass conservation
additional constrains on the rescalings retaining free o
one scale. The requirement of the independence of
asymptotic mass distribution of any scale whose value
defined by the initial mass distribution leads to the RG eq
tion @15#.

A. Free coagulation

It is easy to check that ifN(g,t) is a solution to Eq.~5!
then a rescaled function

N1~g,t !5
1

N0
N S g

g0
,
t

t0
D ~19!

is also a solution once yet arbitrary scales meet the condi

g0
11lt0

N0
51. ~20!

The mass conservation

E
0

`

gN~g,t !dg5E
0

`

gN1~g,t !dg ~21!

imposes another condition

g0
25N0 . ~22!

The independence of the asymptotic mass distribution of
initial conditions implies its independence of the scalesN0 ,
g0, and t0. If we differentiate Eq.~19! over g0, take into
account the links Eqs.~20! and~22!, and then putg051, we
derive the RG equation for the asymptotic mass distribut
NA ,

g
]NA

]g
1~12l!t

]NA

]t
12NA50. ~23!

The solution to this equation has the form

NA~g,t !5t22/(12l)c~gt21/(12l)!, ~24!

wherec(x) is yet unknown function. The mass distributio
Eq. ~24! conserves the total particle mass concentration,
the value

M5E
0

`

gNA~g,t !dg5E
0

`

xc~x!dx ~25!

does not change with time.
Substituting Eq.~24! into Eq. ~5! results in the equation

for the universality functionc(x),

22c2xc85~12l!~Kcc!x . ~26!

In studying the singular mass spectra it is much more c
venient to rewrite Eq.~26! in terms of the functions
4-3
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fs~x!5E
x

`

ysc~y!dy ~s5a,b!. ~27!

Noticing that22c2xc85(xf0)9 and using Eq.~A3! in the
Appendix we get

xf0~x!5~12l!~fa* fb!, ~28!

where (f * g) stands for the Laplace convolution (f * g)
5*0

x f (x2y)g(y)dy. The equation linking the functionsfs

andf0,

xs
df0

dx
5

dfs

dx
~29!

follows from the definition offs @Eq. ~27!#.
Equations~26! and ~28! are invariant with respect to th

scaling transformation

c1~x!5
1

x0
11l

cS x

x0
D , ~30!

that is, c1(x) is also a solution to Eqs.~26! or ~28!. This
transformation, however, changes the total mass conce
tion

M15x0
12lM . ~31!

Another transformation

c1~x!5
1

x0
2
cS x

x0
D ~32!

leaves the mass unchanged, but changes Eq.~28!. The func-
tion c1 meets the equation

2x0
12l~2c11xc18!5~12l!~Kc1c1!x . ~33!

At l51 the RG argumentation should be modified. It
expected that exponential time dependencies replace
power ones in Eq.~24!. These dependencies contain a tim
scale fixed with the initial conditions to Eq.~5!. We, there-
fore, replace] t5j]j in Eq. ~5! and redefine the rescale
function in Eq.~19!,

N1~g,t !5
1

N0
N S g

g0
,
j

j0
D . ~34!

The functionN1 is again, a solution to Eq.~5! if the condi-
tion Eq. ~22! is fulfilled. The dynamical condition Eq.~20!
adds nothing new, and the link between the scalesj0 andg0
should be introduced differently. We use the link

j0~g0!5ag0
k ~35!

introducing no new scales. Herea and k are constants. On
differentiatingN1 over g0 and applying Eqs.~22! and ~35!
we get
04160
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]NA

]g
1ta

]NA

]t
12NA50, ~36!

whereta5ak is a time scale whose value is defined by t
initial conditions.

The solution to Eq.~36! has the form

NA~g,t !5e22t/tac~ge2t/ta!. ~37!

The equation forc is readily obtained on substituting Eq
~37! into Eq. ~5!,

xf05ta~fa* f12a!. ~38!

The transformation property Eq.~30! remains valid atl51,
but in contrast to other cases it changes neither the scata
nor the total mass@the value off1(0)#.

It is important to notice that the scaleta is proportional to
the reciprocal mass concentration,

ta}M 21. ~39!

In order to prove it we notice that the asymptotic mass d
tribution has the structure

NA5Mg0
22c~g/g0!. ~40!

The value ofw2}g0M @see Eq.~14!#. On the other hand
ẇ25*g2(KNaNA)gdg}M2g0. Hence, ġ0}g0 /M , which
proves Eq.~39!.

B. Source-enhanced coagulation

The existence of self-preserving regimes in sour
enhanced systems is less evident, for the presence o
source term in Eq.~10! makes it impossible for a straightfor
ward application of RG. This difficulty can be avoided b
assuming that the source can be ignored in Eq.~10! and
replaced by the condition that the total mass concentra
grows asM (t)}ts. This step restores the possibility to app
the RG approach~see also Ref.@22#!.

Once again, we compare two asymptotic mass spe
NA(g,t) and N 0

21NA(g/g0 ,t/t0) and find the condition for
the rescaled spectrum to describe the same regime as no
caled one. The first condition does not differ from Eq.~20!,

N05g0
11lt0 . ~41!

Next, the mass concentration should grow as the powers of
time, i.e.,

E
0

`

gNA~g,t !dg5
1

N0
E

0

`

gNAS g

g0
,

t

t0
Ddg5Jts. ~42!

This condition gives

N05
g0

2

t0
s

. ~43!

Combining Eqs.~41! and ~43! yields
4-4
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N05g0
[21s(11l)]/(11s) , t05g0

(12l)(11s) . ~44!

Our final requirement of independence of the asympto
distribution of the scaleg0 leads to the RG equation

21s~11l!

11s
NA1

12l

11s
t
]NA

]t
1g

]NA

]g
50. ~45!

The solution to this equation has the form

NA~g,t !5t2jc~gt2h!, ~46!

where

j5
21s~11l!

12l
, h5

11s

12l
. ~47!

The equation for the universality functionc(x) is readily
derived by substituting Eq.~46! into Eq. ~5! for free coagu-
lation. The action of the source is accounted for by condit
~42! providing the power growth of the particle mass co
centration with time. The equation forc looks as follows:

2
21s~11l!

12l
c2

11s

12l
xc85~Kcc!x . ~48!

Integrating twice both sides of this equation fromx to `
gives

11sl

12l
xf01sf15~fa* fb!. ~49!

At l51 the RG equation Eq.~39! should be modified by
replacing the scaleta with ta(t)}1/M (t). This step can be
done, for the power dependence of the mass concentratio
time is slow compared to the exponential dependence of
characteristic particle mass@see Eq.~51! below#. The RG
equation is then

g
]NA

]g
1

ta
s11

ts

]NA

]t
12NA50, ~50!

The solution to this equation again, has the form of Eq.~40!
with

g0~ t !5exp@2~ t/t1!s11#. ~51!

The functionc(x) meets the same equation@Eq. ~38!# as in
the case of free coagulation. The strightforward substitut
of Eq. ~40! with g0 given by Eq.~51! readily proves this
statement.

C. Coagulation condensation

Now let us return to Eq.~12!. At the late stage of evolu
tion of the system the vapor concentrationC(t) and the mo-
ments of particle mass distributionwg(t) are expected to be
monotonous functions of time. Then it is possible to imag
two situations.

~i! The vapor concentration grows with time slower thant,
anddtC on the lhs of Eq.~12! can be neglected, i.e.,
04160
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C~ t !'
1

wg~ t !
. ~52!

The mass of disperse phase then grows asM't, i.e., all
vapor mass converts to the particles. The case when m
mer concentration grows linearly with time

C~ t !'at, ~53!

but a,1, with the mass of the disperse phase growing l
early,

M ~ t !2M05~12a!t ~54!

can also be attributed to this item.
~ii ! The vapor concentration grows with time asC(t)'t,

while the mass of the disperse phase also grows, but slo
than t,

M ~ t !}ts with 0<s,1. ~55!

Below we derive the conditions for the realization
these cases and the equations for the asymptotic mass
tra.

Case (i). Let us rewrite continuity equation~15! taking
into account Eq.~52!,

]N
]t

1
1

wg~ t !

]ggN
]g

5~KNN!g . ~56!

Since the mass concentration grows with time ast, we can
put s51 in Eqs.~46! and ~47! and find that the asymptotic
regime is described by the distribution

N~g,t !5A~ t !c„gB~ t !… ~57!

with

A~ t !5t2j, B~ t !5t2h. ~58!

The power exponentsj andh found from Eq.~47! are

j5
31l

12l
, h5

2

12l
. ~59!

The equation forc(x) is derived by substituting Eq.~56!
into Eq. ~15!. The result is

2
31l

12l
c2

2

12l
xc81

1

fg~0!
~xgc!85

d2

dx2
~fa* fb!.

~60!

The parentheses on the rhs of Eq.~60! stand for the Laplace
convolution@see Eq.~A2! of the Appendix#. The lhs of Eq.
~60! can be rewriten as

2
31l

12l
c2

2

12l
xc81

~xgc!8

fg~0!

5
d2

dx2 S 11l

12l
xf0~x!1f1~x!2

fg~x!

fg~0! D . ~61!

Integrating Eqs.~60! and ~61! twice from x to ` gives
4-5
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11l

12l
xf0~x!1f1~x!2

fg~x!

fg~0!
5~fa* fb!. ~62!

The identity

f1~x!5xf0~x!1E
x

`

f0~y!dy ~63!

allows one to cast Eq.~62! into another useful form,

2E
0

x

f0~y!dy1
2

12l
xf0~x!1

1

fg~0!
E

0

x

ygc~y!dy

5~fa* fb!. ~64!

Puttingx50 in Eq. ~62! yields

f1~0!5E
0

`

xc~x!dx51. ~65!

Equation~57! together with Eqs.~58! and ~59! provides the
asymptotically linear growth of the total mass concentrat
with time,

M ~ t !2M05E
0

`

gNA~g,t !dg't. ~66!

Case (ii). If wg(t) drops with time sufficiently fast, then
the concentrationC}t at larget, the mass concentration o
the disperse phase growing slower thant. The continuity
equation~15! takes the form

] t N1t]gggN5
]2

]g2
~Fa* Fb!. ~67!

The substitution ofN(g,t) in the form of Eq.~46! and bal-
ancing the powers of time in Eq.~67! give

j5
312l2g

12g
, h5

2

12g
. ~68!

Using Eq.~47! allows us to find the growth exponents in Eq.
~42!,

s5
122l1g

12g
. ~69!

The condition 0,s,1 puts two restrictions ong andl,

g,l and g.2l21. ~70!

The equation for the universality functionc(x) looks as
follows:

2
312l2g

12g
c2

2

12g
xc81

d

dx
xgc5

d2

dx2
~fa* fb!.

~71!

Integrating twice fromx to ` both sides of Eq.~71! yields
04160
n

11g22l

12g E
x

`

f0~y!dy1
2

12g
xf0~x!2fg~x!5~fa* fb!.

~72!

It is seen, that the coefficient in the second term on the
of Eq. ~72! is positive because of the second condition~70!.

At g52l21 Eq. ~69! givess50. The mass of dispers
phase ceases to grow. At this and smallerg the condensation
process is slow and only a finite part of vapor converts to
disperse phase (s50). This means that the condensation pr
cess becomes ineffective at large time and can be thus
nored. The coagulation process goes like in free system

IV. TYPES OF SINGULAR DISTRIBUTIONS

The term ‘‘singular distribution’’ appeared for the firs
time in Ref. @19#. It refers to the asymptotic distribution
having a singularity at small particles masses. Such distr
tions had been known before this work, e.g., Junge’s dis
butions of atmospheric aerosols@1,4#, mass distributions in
source-enhanced system@22–24#, the asymptotic distribution
in the Golovin-Scott model@25,26# ~the model a51, b
50). In Refs.@19,22# it was shown that the singular distr
butions should appear in many realistic situations such
diffusion controlled formation of supported metal crysta
lites, coagulation of aerosols in shear viscous flows and
turbulent atmosphere, coagulation of fractals, sour
enhanced coagulation of aerosols in the continuum regi
etc.

A. Singular distributions

Let us return to Eq.~24! and assume the functionc(x) to
be integrable atx50. Then the asymptotic time dependen
of the total particle number concentration can be found fr
Eq. ~24!,

N~ t !5E
0

`

N~g,t !dg'E
0

`

NA~g,t !dg}t21/(12l). ~73!

And now we are showing that fora5b.0 the asymptotics
Eq. ~73! cannot hold. To this end, we consider the discr
version of the Smoluchowski equation, which, in particul
follows from Eq. ~5! if the latter is subject to the initia
conditionN(g,0)5d(g21) @d(x) is Dirac’s delta function#.
In this case the mass spectrum has a discrete form

N~g,t !5 (
k51

`

ck~ t !d~g2k!. ~74!

The concentrationsck(t) obey the set of equations

dcs

dt
5

1

2 (
k51

s21

K~s2 l ,l !cs2 lcs2cs(
k51

`

K~s,l !cl . ~75!

Let us consider the kernelK(g,l )5gal a. From Eq.~75! one
finds
4-6
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c1~ t !5expS 2E
0

t

wa~ t8!dt8D ~76!

and

N~ t !512
1

2E0

t

wa
2~ t8!dt8, ~77!

where the momentwa(t) is now defined as

wa~ t !5 (
k50

`

kack~ t !. ~78!

Since att→` the monomer concentration goes to zero,
integral on the rhs of Eq.~76! must diverge, i.e.,s<1. On
the other hand, the integral*0

`wa
2(t)dt51, which corre-

sponds toN(`)50. Two inequalitiy 2s.1 and the law
N(t)}t2(2s21) then follow immediately from the assump
tion thatwa(t)}t2s. And finally, the conditiona.0 leads to
the obvious inequalityN(t)<wa(t), i.e., 2s21>s. Com-
bining these three inequalities,s<1, 2s.1, and 2s21
>s gives s51 instead ofs51/(122a), as follows from
Eq. ~73!.

The question then comes up: how to reconcile this re
with the self-preservation in the form of Eq.~24!?

The answer was found in Ref.@19#. It is: one must sacri-
fice the assumption that the functionc(x) is regular atx
50. It was shown@19# that the functionc(x) having the
singularity

c~x!}
1

x11l
at x!1 ~79!

removes the contradiction, once the diverging integrals
regularized by introducing a cutoff parameterz}1. For ex-
ample,

N~ t !5E
0

`

N~g,t !dg'E
z

`

NA~g,t !dg

}t21/(12l)E
zb(t)

`

x2(11l)dx}
1

t
, ~80!

whereb(t)}t21/(12l). All other momentsfa(t) with a,l
containig the divergency at smallx also behave liket21.

Not all, however, is yet in order. The point is that th
singular distribution cannot be so strightforwardly subs
tuted into Eq.~5!, for its rhs @Eq. ~6!# contains divergent
integrals. Once again, the situation is saved by introduc
the cutoff parameter thatexactly cancelsin the limit e
5zt21/(12l)→0 ~the proof shown in the Appendix!. This
extremely important property of the Smoluchowski equat
was first noticed in Ref.@19#.

B. Free systems

Let us analyze first the types of singularities arising in
asymptotic mass spectra in free systems. The substitutio
04160
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the power functionc(x)}xs into Eq.~28! and balancing the
powers lead to the result (a.b.0):

c~x!5Ax2(11l) ~81!

with

A5
ab

l~12l!B~12a,12b!
. ~82!

HereB(x,y) is Euler’s beta function.
Equations~81! and ~82! give an exactsolution of Eq.

~28!. Unfortunately, this exact solution is unnormalizab
i.e., the integral*0

`xc(x)dx diverges. There exist other so
lutions having the singularityc(x)}x2(11l). This is a con-
sequence of the scaling invariance of the functionc(x) @see
Eq. ~30!#.

At a5b50 it is possible to find the normalizable solu
tion

c~x!5e2ax. ~83!

The scalea is defined by the normalization condition.
At b50 the singularity is weaker thanx2(11l), and the

integral fl(0)5*0
`xlc(x)dx converges. Hence, at smallx

Eq. ~28! can be rewritten as

xf05~12l!fl~0!E
0

x

f0~y!dy. ~84!

The solution to this equation is

f0~x!5bx2k, ~85!

where k512(12l)fl(0) and b is a constant. Ifq(x)
5f0(x)2bx2kÞ0,̀ at x→0 then Eq.~84! reproduces the
result of Ref.@27# k5l/2. We, however, did not find con
vincing arguments for rejecting the possibilitiesq(0)50 or
q(0)5`.

C. Source-enhanced coagulation

At small x the second term on the lhs of Eq.~49! goes to
1, and the asymptotics ofc(x) is defined by the equation

E
0

x

fa~x2y!fb~y!dy5s. ~86!

Again, we seek the solution in the powerlike form. On su
stituting c(x)5Ax2v into Eq. ~86! yields

v5
31l

2
~87!

and

A 25s
~v2a21!~v2b21!

B~a2v12,b2v12!
, ~88!
4-7
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Now let us notice that atv5(31l)/2 the sum of the argu
ments of beta function in Eq.~88! is unity, which allows one
to use the well known theorem for Euler’s beta function,

B~a2v12b2v12!5BS 12m

2
,
11m

2 D5
p

cos~pm/2!
.

~89!

Finally,

A5As
~12m2!cos~pm/2!

4p
, ~90!

where m5a2b, m>0. No singular solutions exist atm
,0.

D. Coagulation condensation

Let us first analyze the behavior of the solution to Eq.~64!
at smallx. At x!1,

c~x!'Ax2v. ~91!

Since the first two terms on the lhs of Eq.~64! can be ne-
glected atx!1, the power balance gives

v522~g2l!. ~92!

The coefficientA in Eq. ~91! is then readily found from Eq
~64!,

A5
~11a2g!~11b2g!

~2g212l!B~g2a,g2b!fg~0!
. ~93!

Now let us formulate the conditions for realizing the ca
~i! in terms ofl and g. Using the definition ofwg(t) Eq.
~14! and the distribution in the form Eq.~57! gives

C~ t !5wg~ t !}AB2(11g)}t r ~94!

with

r 5j2h~11g!5
11l22g

12l
. ~95!

The condition allowing for ignoringdtC in Eq. ~12! is r
,1 or

g.l. ~96!

Another restriction ong follows from the convergence o
*0

xygc(y)dy at the lower limit,

2g2l.1. ~97!

At l,g,(11l)/2 the condensation term in Eq.~56! can
be neglected, and the asymptotic regimes do not differ
those in source-enhanced coagulating systems.

The singular asymptotics never realizes atg,l. Neither
attempt to balance the powers ofx in Eq. ~72! gives consis-
tent results.
04160
f

V. EXAMPLES

This section considers two models in which the singu
universality functions can be found analytically.

A. Model aÄ1, bÄ0

Let us consider first the modela51, b50. As was
shown above, the asymptotic regimes of free and sou
enhanced coagulation and coagulation-condensation
cesses atg51 are described by the same universality fun
tion c(x), which is the solution of the equation

taxf05~f0* f1!, ~98!

where ta is the time scale introduced in deriving Eq.~38!.
The link

f185xf08 ~99!

closes Eq.~98!.
In terms of Laplace’s images Eqs.~98! and~99! have the

form

2ta

dF0

dp
5F0~p!F1~p! ~100!

and

pF1~p!2152
d

dp
pF0~p!, ~101!

whereFs(p)5*0
`e2pxfs(x)dx.

Equation~100! allows one to find the constantta . To this
end, we put p50 in Eq. ~100! and notice thatF08(0)
5*0

`xF0dx. On integrating by parts givesF08(0)
51/2*0

`c(x)x2dx50.5f2(0). Similarly one finds F1(0)
5*0

`xf1(x)dx5f2(0). Then Eq.~100! gives

ta52. ~102!

There is no problem now to derive a first-order different
equation forF0 alone,

2p
F08

F0
5F01pF0821. ~103!

The result Eq.~102! is taken into account in Eq.~103!. Equa-
tion ~103! is readily solved to give

F0~p!5
A114p21

2p
. ~104!

The functionc(x) corresponding to Eq.~104! is

c~x!5
1

A2px3
e2x/4. ~105!

The functionc(x) can always be rescaled according to E
~32!.
4-8
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The asymptotic solution of this problem was found in R
@19# for free coagulation.

B. Model aÄbÄ0

Let us consider the source-enhanced coagulation pro
for the model with constant coagulation kernel. According
the consideration of Sec. IV the asymptotic mass distribut
has the singularityc(x)}x23/2. Here we find the exac
asymptotic mass distribution. To this end, we must solve
equation@see Eq.~49!#,

xf0~x!1sf1~x!5~f0* f0!. ~106!

Let us again introduce the Laplace imageF0(p) and use Eq.
~101!. These steps result in the first-order differential eq
tion

S s
F021

p
1~s11!

dF0

dp D52F0
2 . ~107!

Noticing that

s
F0

p
1~s11!

dF0

dp
5~s11!p2s/(s11)

d

dp
ps/(s11)F0

~108!

reduces this equation to

dy

dz
1y22szs2150. ~109!

Here we introduced the new unknown functiony
5ps/(s11)F0 and the variablez5p1/(s11). At s51 this equa-
tion has a simple solutiony5tanhz or

F0~p!5
1

Ap
tanhAp. ~110!

The original is now readily restored,

f0~x!5Q2~0u ipx!, ~111!

where

Q2~zuy!52(
n50

`

expF ipyS n1
1

2D 2Gcos~2n11!z

~112!

is Jacobi’s theta function@28#. At x!1 it has the asymptotics

f0~x!5
1

Apx
F122 expS 2

1

xD G . ~113!

Equation~109! can be reduced to a linear second-ord
differential equation

d2Z

dz2
2szs21Z50. ~114!
04160
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Although the solution to this equation can be found in ter
of known special functions the inversion of the Lapla
transform in the analytical form is hardly possible.

VI. RESULTS AND DISCUSSION

In considering the asymptotic behavior of the partic
mass distributions the RG approach has been applied to t
types of coagulating systems: free coagulating system
which coagulation alone is responsible for the disperse p
ticle growth, source-enhanced coagulating systems, wher
external spacially uniform source permanently adds fr
small particles, with the particle production being a pow
function of time, and coagulating-condensing systems
which a condensation process accompanies the coagul
growth of disperse particles. The particle mass distributio
of the form @see Eq.~3!#

NA~g,t !5A~ t !c„gB~ t !…

have been found to describe the asymptotic regimes of
particle growth in all the three types of coagulating system

In free coagulating systems Eq.~3! absolutely naturally
follows from the Smoluchowski equation. Of course, th
self-similarity solution corresponds to some fixed initial co
ditions, and the step done by earlier authors reduced to
assumption that the asymptotic regime of the coagula
process was independent of the form of the initial conditio
It was natural, therefore, to reject the singular asymptotics
irrelevant, for the integrals entering the collision term in t
Smoluchowski equation were divergent.

The RG approach introduces the assumption of the in
pendence of the initial conditions explicitly via the RG equ
tion @Eqs.~23! and ~45!#, and the derivation of Eq.~3! then
relies only on the transformation properties of the Smo
chowskii equation allowing for the formulation of the dy
namical constraint Eq.~20!. Another constraint Eq.~22! re-
lated to the mass conservation is entirely independent of
form of the kinetic equation. Moreover, the dynamical co
dition can also be derived relying upon a consideration in
spirit of earlier works on the RG@13#, rather than the kinetic
equation. For free coagulation it was done in Ref.@19#. The
RG approach is in no way related to the concrete proper
of the functionc and thus readily admits its singular beha
ior. The fact that the singularity does not prevent the deri
tion of a closed equation forc resolves the problem of find
ing and classifying the asymptotic regimes.

In the source-enhanced coagulating systems and
coagulating-condensing ones no exact self-similarity so
tions exist. Still the RG approach has been shown to w
and to give rather impressive results.

We have given the classification of the singular se
preserving regimes in coagulating systems and have defi
the conditions for their realization. They are listed below.

In the free coagulating systemsc(x)}1/x11l at x!1,
which corresponds to the mass distribution of the form

NA~g,t !}
1

g11lt
. ~115!
4-9
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The condition for the realization of this asymptotics isa,b
.0. At b50 the singularity is weaker,c(x)}1/x11g, where
g,l @see Eq.~85!#. It is not so difficult to understand th
physical meaning of this condition: the rate of interaction
small particles (g}1) with large ones (g@1) is of the order
of K(1,g)}ga andK(g,g)}gl, respectively, i.e., the smalle
particles interact with the larger ones much slower than
latters between themselves (a<l). Strongly polydisperse
mass spectra thus form in which the part of larger particle
less than that of smaller ones. The situation changes dr
cally once b,0. In this caseK(1,g)@K(g,g), i.e., the
larger particles ‘‘eat’’ the smaller ones much faster than e
others. A hump in the distribution at large masses develo
while the concentrations of small particles drops down w
time. A singular and a nonsingular distributions are shown
Fig. 1.

Two inequalitiesa1b<1 anda2b,1 define the con-
ditions for the singular distributions to exist in source
enhanced coagulating systems. These are simply the co
tions for the convergency of the integral on the rhs of E
~86!. The singularity of the mass spectra in the sourc
enhanced coagulating systems isc(x)}x2(31l)/2 @22,23# or,
in terms of the particle masses

NA~g,t !}g2(31l)/2t2(12s)(11l)/2(12l). ~116!

At s51 ~a constant in time source! the time dependent mul
tiplier turns to unity. The mass spectrum has a steady-s
left wing, i.e., the spectrum of highly disperse fraction
independent of time, although the source permanently s
plies the system with the fresh portions of small particl
These particles deposite mainly on the larger ones provid
the right wing of the spectrum to move to the right along t

FIG. 1. Nonsingular~curve 1! and singular~curve 2! particle
mass distributions. Shown are the universality functionsc(x) found
for diffusion controlled coagulation of particles@the kernelK(g,l )
5(g21/31 l 21/3)(g1/31 l 1/3)#. Curve 1~nonsingular!—free coagula-
tion process. Curve 2—source-enhanced coagulation process.
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mass axis. The steady-state regimes of coagulation in sou
enhanced systems had been considered in@22–24#.

We have considered the systems of coagulating parti
in which a constant in time source produces a low vola
vapor condensing onto the particle surfaces. The part
growth in such systems is similar in many respect to tha
source–enhanced and~sometimes! free systems. Several re
gimes have been detected.

~i! The disperse phase consumes all mass of the vapo
this casec(x)}1/x22g1l, or

NA~g,t !}1/t2g212lg22g1l. ~117!

The conditions for realizing these distributions are:g,1,
2g.11l. At l,g,(l11)/2 the coagulating-condensin
system behaves like a source-enhanced coagulating sy
with linearly growing mass concentration.

~ii ! When the mass of the disperse phase grows slo
than t the asymptotic mass distribution in coagulatin
condensing systems is the same as in source-enhanced
tems. The singular asymptotics, however, never realizes
g<2l21 condensation is so slow that the coagulating d
perse system consumes only a finite part of vapor and
coagulation process goes like in free coagulating system

The whole situation is clearly seen from Fig. 2.

FIG. 2. The regimes of particle growth in coagulatin
condensing systems.~1! g.(11l)/2. The mass of disperse phas
grows ast, i.e., the coagulating particles deplete the vapor.~2! (1
1l)/2.g.l. The mass of disperse phase still grows linearly w
time. The universality function is the same as in source-enhan
coagulating systems with constant in time source.~3! l,g,2l
21. The mass of disperse phase grows with time slower than
early. The mass of condensable vapor grows linearly with time.
singular regimes are detected.~4! g,2l21. Only a finite part of
vapor condenses on the disperse particles. The universality func
has the same shape as in free coagulating systems. No sin
regimes can exist.
4-10
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VII. CONCLUDING REMARKS

Coagulation processes display a number of very dive
self-preserving asymptotic regimes. The RG approach oc
to be a very fruitful tool for their investigation. Here we hav
focussed on the singular asymptotic regimes that realize
number of practically important situations: source-enhan
coagulation of aerosols in continuum regime, coagulati
condensation growth of aerosol particles in turbulent flow
etc. Once the conditions for realizing the singular asymp
ics are known, it becomes easy to diagnose them. It is m
harder to solve respective equations and to find the func
c either analytically or numerically. Even the simplest an
lytically soluble examples are far from trivial.
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APPENDIX: THE IDENTITY

Let f (x) andg(x) be arbitrary functions and

F~x!5E
x

`

f ~y!dy and G~x!5E
x

`

g~y!dy. ~A1!

We also introduce the notation

~q* p!5E
0

x

q~x2y!p~y!dy ~A2!

for the Laplace convolution of a couple of functionsp(x)
andq(x).

Now we are ready to prove a very important identity

d2

dx2
~F* G!5~ f * g!2 f ~x!G~0!2g~x!F~0!. ~A3!

To this end let us find the first derivative of (F* G),

dx~F* G!5F~0!G~y!1~Fx8* G!. ~A4!

Next, we integrate by parts the second term on the rhs of
~A4!. The result is
y
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~Fx8* G!52~Fy8* G!52G~y!F~0!1F~y!G~0!1~F* Gy8!.
~A5!

On combining this result with Eq.~A4! yields

dx~F* G!5G~0!F~y!1~F* Gy8!. ~A6!

Differentiating once again Eq~A6! over x and taking into
account thatF85 f andG852g prove Eq.~A3!.

Above proof assumed that the functionsf, g, F, and G
have no singularities atx50. The extension to singularf and
g is almost straightforward. We apply the identity Eq.~A3! to
the functions

f e~x!5 f ~x!Q~x2e! and ge~x!5g~x!Q~x2e!,
~A7!

whereQ(x) stands for the Heaviside step function. The r
sult is

d2

dx2
~Fe* Ge!5E

e

x2e

f ~x2y!g~y!dy2 f ~x2e!G~e!

2g~x2e!F~e!. ~A8!

Now it is seen that in the limite→0 the rhs of Eq.~A8! is
finite and independent ofe. Indeed, at smalle we have

]

]eEe

x2e

f ~x2y!g~y!dy2 f ~x2e!G~e!2g~x2e!F~e!

52 f ~x2e!g~e!2 f ~e!g~x2e!1 f ~x!g~e!1g~x! f ~e!.

~A9!

At small e the rhs of Eq.~A9! goes to zero. In proving Eq
~A9! the convergence of the integral on its lhs was assum
i.e., not very strong singularities off andg are admissible.

The identity ~A3! allows the Smoluchowski equatio
] tN(g,t)5(KNN)g to be rewritten as

]N

]t
5

]2

]g2E0

g

Fa~g2 l ,t !Fb~ l ,t !dl. ~A10!

This form of the Smoluchowski equation appeared for
first time in Ref.@19#.
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